
How to Use Alembic for Database
Migrations in Your FastAPI

Application
May 24, 2024 • 5 min read

Tags: FastAPI, SQLAlchemy, Alembic

Introduction
When building a FastAPI application, managing database schema changes can be a
daunting task. As your application evolves, your database schema must adapt to
accommodate new features, bug fixes, and changing requirements.

Alembic is a lightweight and flexible database migration tool that simplifies the
process of managing database schema changes. By using Alembic, you can track
changes to your database schema, revert to previous versions, and collaborate with
your team more effectively.

In this tutorial, I will show you how to use Alembic for database migrations in a FastAPI
application by building the project from scratch. I will be using PostgreSQL as the
database server, but you should be able to follow this tutorial by using any database
server.

By the end of this tutorial, you will have:

● A complete working CRUD API.
● Knowledge to make changes to your models and apply database migrations.

Setup a new project
We will create a new project from scratch. It is recommended to create new virtual
environment to isolate your project’s dependencies from the system Python
environment.

Create and activate a new virtualenv:

python3 -m venv venv
. venv/bin/activate

nashruddinamin.com
Web Development and AI - Python, React, Rust. 1

https://fastapi.tiangolo.com/
https://alembic.sqlalchemy.org/en/latest/
https://www.nashruddinamin.com

Pro Tip: Feel free to replace the virtualenv above with Pipenv or Poetry.

Install the required packages:

pip install fastapi sqlalchemy alembic psycopg2-binary
pip freeze > requirements.txt

Note that I installed psycopg2-binary for PostgreSQL. If you are using a different
database server, you should install the corresponding database driver. For example,
install mysql-connector-python if you are using MySQL.

Create the src/ directory and make it a package:

mkdir src
touch src/__init__.py

Your directory structure should look like this:

.
├── requirements.txt
└── src

└── __init__.py

We will put all of our database and FastAPI code in the src/ directory.

Create the SQLAlchemy model
We will setup the database connection in src/database.py file and define our model in
src/models.py file. By separating the database connection and models definition, we
can maintain a clean and modular architecture for our FastAPI application.

Create a new file named src/database.py and add the following code:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

Replace with your own PostgreSQL instance
DATABASE_URL = 'postgresql://dbuser:dbpassword@localhost/dbname'

engine = create_engine(DATABASE_URL)
SessionLoad = sessionmaker(bind=engine)

The code above sets up a connection to a PostgreSQL database using SQLAlchemy.
The connection string is hardcoded in the file just to make it simpler. To add more
security layer, you can load the connection string from environment variables instead.

nashruddinamin.com
Web Development and AI - Python, React, Rust. 2

https://www.nashruddinamin.com

Pro Tip: Make sure that you have created the database and the user on your PostgreSQL
server.

Now we write the SQLAlchemy model. Create a new file named src/models.py and add
the following code:

from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column

class Base(DeclarativeBase):
pass

class Item(Base):
__tablename__ = 'items'

id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str] = mapped_column(nullable=False)
price: Mapped[float] = mapped_column(server_default='0')

After we have created the model, we want to automate the database migration using
Alembic.

Using Alembic for database migration
We use Alembic to automate database migrations, which involves managing changes
to the database schema over time.

Start by initializing Alembic:

alembic init alembic

The command above will create the alembic/ directory with the necessary
configuration files. After you run this command, your directory structure will look like
this:

.
├── alembic
│ ├── README
│ ├── env.py
│ ├── script.py.mako
│ └── versions
├── alembic.ini
├── requirements.txt
└── src

├── __init__.py

nashruddinamin.com
Web Development and AI - Python, React, Rust. 3

https://www.nashruddinamin.com

├── database.py
└── models.py

From all of the files generated by Alembic, you only need to modify the alembic/env.py
file. This file is a Python script that serves as the entry point for Alembic’s migration
process. It’s responsible for setting up the environment, loading the configuration, and
executing the migration scripts.

Open alembic/env.py and find the line that contains:

target_metadata = None

and replace it with:

from src.models import Base
target_metadata = Base.metadata

By importing Base from src.models and setting target_metadata to
Base.metadata, we are configuring Alembic to work with your SQLAlchemy models.
Alembic will generate the proper migration scripts by reading our model’s metadata.

Below those lines, add the following code as well:

alembic/env.py
from src.database import DATABASE_URL
config.set_main_option('sqlalchemy.url', DATABASE_URL)

By importing the DATABASE_URL variable and setting the sqlalchemy.url option, we
are configuring Alembic to connect to our database using the specified connection
string. It allows us to specify the connection string in the environment variables
instead of hardcode it in the alembic.ini file.

Create the database migration script:

alembic revision --autogenerate -m "Initial migration"

And run the database migration:

alembic upgrade head

After you run the command, you should see the “items” table is created in your
PostgreSQL database.

nashruddinamin.com
Web Development and AI - Python, React, Rust. 4

https://www.nashruddinamin.com

Create the API endpoints
To create the API endpoints using FastAPI, we’ll start by writing the Pydantic models.
These models are used to serialize data into JSON and perform data validation. It is
also being used in the responses where the data is converted into JSON format.

Open src/schemas.py and add the following code:

from pydantic import BaseModel, PositiveFloat

class Item(BaseModel):
id: int
name: str
price: PositiveFloat

class ItemCreate(BaseModel):
name: str
price: PositiveFloat

class ItemUpdate(BaseModel):
name: str | None = None
price: PositiveFloat | None = None

In the code above, we created 3 Pydantic models: Item will be used as a response
model for API endpoints that return a single item or a list of items, ItemCreate and
ItemUpdate will be used to ensure that data is validated and sanitized when creating
or updating items.

Now that the models are ready, we can write the API endpoints to create, read,
update, and delete the items. Open src/main.py and add the following code:

from fastapi import FastAPI, Depends, HTTPException
from sqlalchemy import select
from sqlalchemy.orm import Session

from . import models, schemas
from .database import SessionLocal

app = FastAPI()

def get_db():
db = SessionLocal()
try:

yield db
finally:

nashruddinamin.com
Web Development and AI - Python, React, Rust. 5

https://www.nashruddinamin.com

db.close()

@app.get('/items')
async def read_items(

skip: int = 0,
limit: int = 15,
db: Session = Depends(get_db)

) -> list[schemas.Item]:
"""
List all items
"""
users = db.execute(

select(models.Item)
).scalars().all()
return users

@app.post('/items')
async def create_item(

data: schemas.ItemCreate,
db: Session = Depends(get_db)

) -> schemas.Item:
"""
Create new Item
"""
item = models.Item(**data.model_dump())
db.add(item)
db.commit()
db.refresh(item)

return item

@app.get('/items/{item_id}')
async def read_item(

item_id: int,
db: Session = Depends(get_db)

) -> schemas.Item:
item = db.get(models.Item, item_id)
if item is None:

raise HTTPException(status_code=404, detail='Item not found')
return item

@app.put('/items/{item_id}')
async def update_item(

item_id: int,
data: schemas.ItemUpdate,
db: Session = Depends(get_db)

) -> schemas.Item:
"""

nashruddinamin.com
Web Development and AI - Python, React, Rust. 6

https://www.nashruddinamin.com

Update item
"""
item = db.get(models.Item, item_id)
if item is None:

raise HTTPException(status_code=404, detail='Item not found')

for key, val in data.model_dump(exclude_none=True).items():
setattr(item, key, val)

db.commit()
db.refresh(item)

return item

@app.delete('/items/{item_id}')
async def delete_item(

item_id: int,
db: Session = Depends(get_db)

) -> dict[str, str]:
"""
Delete item
"""
item = db.get(models.Item, item_id)
db.delete(item)
db.commit()
return {'message': 'Item successfully deleted'}

The code above provides the API endpoints to perform CRUD (Create, Read, Update,
Delete) operations for the items and is self-explanatory.

Pro Tip: Try the API endpoints above using Curl or HTTPie to make sure that it is working as
expected.

Making new changes to the model
Lets say you want to make some changes to the model and you want Alembic to
generate the migration script to alter the database. As an example, lets add a new
“quantity” column.

Open src/models.py and add the column:

class Item(Base):
...
quantity: Mapped[int] = mapped_column(server_default='0')

The new line tells SQLAlchemy that the quantity column is of type int, and set the
default value to 0 if no value is provided when inserting a new row. It will also set the
value to 0 for existing rows.

nashruddinamin.com
Web Development and AI - Python, React, Rust. 7

https://www.nashruddinamin.com

Add the same field to the Pydantic model so the API will return the item’s quantity as
well. Open src/schemas.py and add the field:

class Item(BaseModel):
...
quantity: PositiveInt

Create and run the database migration:

alembic revision --autogenerate -m "Added quantity column"
alembic upgrade head

After you run the command, the table in your PostgreSQL database should have the
“quantity” column. The field will also be returned in the API responses as well.

nashruddinamin.com
Web Development and AI - Python, React, Rust. 8

https://www.nashruddinamin.com

